
RESTful API
representational state transfer “full” application programming interface

What is an API? “an application programming interface” the keyword is

interface.

An API is the interface that a software program presents to other

programs, to humans, and, in the case of web APIs, to the world via

the internet. Although APIs are designed to work with other

programs, they’re mostly intended to be understood and used by

humans writing those other programs.

• It is a programming interface not a user interface

• It is intended to be limited in what it offers

• It is both Human and Machine readable

• It must be documented by its creators to be useful

An API works kind of like a restaurant

If you go to a restaurant as a customer, you are not

allowed to enter the kitchen.

You need to know what is available. For that, you

have the menu.

After looking at the menu, you make an order to a

waiter, who passes it to the kitchen and who will

then deliver what you have asked for.

The waiter can only deliver what the kitchen can

provide.

An API works kind of like a restaurant

If you go to a restaurant as a customer, you are not

allowed to enter the kitchen.

The waiter is the API. You are someone who is asking

for service. You are an API customer or consumer. The

API is providing consumables from the server.

You need to know what is available. For that, you

have the menu.

The menu is the documentation which explains what

you can ask for from the API.

After looking at the menu, you make an order to a

waiter, who passes it to the kitchen and who will

then deliver what you have asked for.

The kitchen is, for example, a server; a database or

something that holds only a certain type of data 
The waiter can only deliver what the kitchen can

provide.

How does it work? An api uses URL’s (web addresses) to communicate.

We send a url as a REQUEST and the data returned is called a

RESPONSE .

A REQUEST has 4 parts:

1. The Endpoint

2. The Method

3. The Headers

4. The Data or body

How does it work?

The endpoint or the root endpoint is really the beginning.

It is the base URL used by the api.

We will be using Github’s API as our example:

https://api.github.com
We use paths to define our requested data

https://api.github.com/users/mrMARK-SUNY/
repos

We add a query to the end of our url to sort our results.

https://api.github.com/users/mrMARK-SUNY/
repos?sort=pushed

https://api.github.com
https://api.github.com/users/mrMARK-SUNY/repos
https://api.github.com/users/mrMARK-SUNY/repos
https://api.github.com/users/mrMARK-SUNY/repos?sort=pushed
https://api.github.com/users/mrMARK-SUNY/repos?sort=pushed

What do we GET? The Results are in JSON

JSON Javascript Object Notation

{
 "property1": "value1",
 "property2": "value2",
 "property3": "value3"
}

 This is a data format not a script
 Yes the quotes are required…

How does it work?

The method is the type of request you send to the server.

We have 2 concepts working together here.

The protocols used by web server (HTTP) and the concept

of CRUD - create, Read, Update & Delete

Webserver / CRUD

GET / READ

POST / CREATE

PUT / UPDATE

PATCH / UPDATE

DELETE / DELETE

How does it work?

The headers are just more information about the

api

curl -H "Content-Type: application/
json" https://api.github.com -v

The body is the data that is sent to the server. We

use -d or —- data

So lets demo this all together by making a new

repo in Github using the api…

What about REST?

So we haven’t said anything about REST or

restfulness or states or transfers.

REST is an approach to designing server systems.

It does not remember the ‘state’ of any previous

requests. It does not remember changes, or

updates or keep track of anything. It sends a fresh

copy of what’s there. This allows it to serve quickly

with very little overhead.

RESTful API
representational state transfer “full” application programming interface
A lightweight interface to exchange limited data types and control programmatically between systems
both local and remote. It is both machine and human readable.

